Working with Text Files
and Rasters

This video will discuss how to work with rasters that have been converted to a
text file format. This topic is an application that uses many of the topics that we
have covered previously in the course.

Reading text files — a review

Use the readline method to get current line.
Repeat the readline method to get successive lines.
readline returns null value (“) at end of file

>>> oTxtFile = open(txtFile) _
B Untitled - No... [Z][B][X]

>>> oTxtFile.readline() File Edit Format View Help

‘Line 1\n’ Line 1 ~
>>> oTxtFile.readline() t] 22 %

‘Line 2\n’

>>> oTxtFile.readline() \
‘Line 3\n’

>>> oTxtFile.readline() Lnt

S TTTT~—— null value 2

Recall that text files are read by iteratively using the readline method of the
file object.

Each time the readline method is used, a new line of the text file is retrieved.

When the end of the file is reached, the readline method will return a null
value.

Reading text files with a loop

Reading is repetitive — use a while loop.

Loop’s test condition checks if readline returned a
null value

— in conditional statements, null value treated as False,
real values treated as True

while loop set up...
line = oTextFile.readline() <€— initial condition

line: <€—— false if line is null (loop stops)

line = oTextFile.readline() €— change condition (get next line)

3

The repetition of reading a file makes it an ideal task for a loop. A while loop is
preferred since we generally don’t know in advance how many lines are
contained in a text file.

The while loop will run until the readline method returns a null value when the
end of the file is reached.

To initialize the while loop condition, get the 15t line from the file.

In the while loop header line, the result from the readline method becomes the
test condition. As long as the readline method returns a non-null value, then
the loop will continue.

Inside the loop, the last line should repeat the readline method — this will get
the next line from the text file and allow the script to progress.

Raster data

Data represented as
pixels

Each pixel is assigned
a single number...

— integer for categorical
data (i.e. land cover)

— decimal for continuous
data (i.e. elevation)

Rasters are a common data format in GIS. These data are represent as pixels.

Each pixel has a single number value assigned to it. This number may be an
integer as in the case of categorical data such as a land cover dataset. Pixel
values may also be decimal numbers as in the case of continuous data such
as a digital elevation model.

Working with raster data

Out-of-the-box raster tools require the Spatial
Analyst extension...
— sometimes requires convoluted workflows =5~

— not always available %

Python provides other options...
— convert raster to array @

— rasters can be converted
to a text file format

— text files can be converted back to a raster

In ArcGIS, the tools for working with raster data are contained within the
Spatial Analyst extension which requires an additional license.

Python provides a number of other options for working with raster data that are
freely available. The option available to us, given our current Python
knowledge, is to work with the raster as a text file. The text file can be modified
and then converted back to a raster.

Converting a raster to a text file

arcpy.RasterTOASCII conversion(input raster, output textFile)

Conversion does not require spatial analyst
Works on all raster formats (ESRI grids, .img, .jpeg, etc.)

File Edit Format View Help

ncols 445 -
nq?ws 593

x11corner -0.5 ?

ylicorner -se2.5 [~ Header lines

cellsize

1l
NODATA_value -9999
254 254 254 253 253 252 252 252 255 253 250 254 255

250 250 250 251 251 251 252 252 253 253 253 254 254 (:el
254 254 254 253 253 252 252 252 246 244 246 249 251

250 251 251 251 252 252 252 253 253 253 253 254 254 ValueS
< >

An ArcTool can convert the raster into a text file format.

This tool will work on all rasters and requires only the basic ArcGIS license.

The resulting text file will contain some basic raster properties in the header
section. The header is followed by the main body of the text file which contains
the actual pixel values.

Raster in text format

ncols

2 5 Nrows

xXllcorner

2

yllcorner
cellsize

NODATA_value

2

®
500, 1500

5

N
NN

N O N

5
1
it

}

Cell
values

/ column count

<
3 «—— row count

500 f int
1500 [~ "ef- poin

100
—999;\ cell size

X

no data
value

Grid reference point always at lower left corner. Can use to
determine coordinates of any cell center.

Let’s look at an example of a small raster in a text format.

The 15t line of the text file specifies the number of columns in the raster.

The 2" line specifies the number of rows

The 3 and 4™ lines specify the coordinates of the lower left corner of the

raster — this coordinate georeferences the raster so that it can be linked to real
world coordinates.

The 5% line indicates the width of the pixels

The 6% line indicates the value used for null pixels which contain no real data.

Starting with line 7, the value for each pixel is listed with a space separating
each value. There is one line of text file that corresponds to each row in the

raster.

Modifying a raster in text format

Not practical to modify the text files directly
Easier to write a new text file with modified values

original new
ncols 3 ncols 3
Nrows 3 nrows 3
xllcorner 500 xllcorner 500
yllcorner 1500 yllcorner 1500
cellsize 100 |:> cellsize 100
NODATA value -9999 NODATA value -9999
D2 9 1 |
21 B 1 0
221 000

When modifying a raster in a text file format, it is more efficient to create an
entirely new text file than to modify the original.

The approach that I'll present will be to read the original raster text file

and create a new text file with the new pixel values.

Copying header lines

arcpy.RasterTOASCII conversion(raster, read txt)

o read txt=open(read txt))
. . = Open text files
o_write_txt = open(write_txt, “w”)

X inTange(o): For header lines (1st

readLine = o_read_txt.readline() > 6 lines) read from old
o_write_txt.write(readLine) file, copy to new.

The first step is in modifying a raster is to convert it to a text file using arcpy’s
RasterToASCII tool.

Then open the raster text file in read mode. Open a second text file in write
mode to store the new raster.

Next, copy the header lines from the original text file to the new text file — this
will give the new raster the same spatial reference information as the original.
Use a for loop to iterate through the first 6 lines of the original raster text file.
Within the loop, read a line from the original file and write it to the new file.

Raster text files vs. other text files

Raster text files have slightly different format than other
text files...

Readline statement gives... no space
for typical text: ‘555551116 7\n’
forrastertextt ‘555551116 7Q'V space

For raster text files, removing the

last character from the line string W

does not work correctly m
leaves space at end of string

10

Raster files are slightly different from other text files...

In a typical text file, the “\n” character usually occurs immediately after the last
value.

However, in a raster text file, there is a space between the last value and the
“\n”.

If we remove the “\n” character from the string using the procedure shown in
the “Working with files” lecture, then we’ll be left with a space after the final
value for in the line.

10

The problems a space can create

The extra space creates a null value in the list
created by the split statement.

>>> line = o_txtFile.readline()[:-1]
>>> |ine
S951867°

>>> line = line.split(“)

>>> line

(Y C&Y 619 6L ™) null value could
[5 ’ 5 s] s 6 ’ 7 sé\causeproblems

1"

The extra space in the line causes a problem when we split the line to extract
the values.

The resulting list will contain a null value at the end.

11

The problems a space can create

>>> |ine
[6531 65'}5 617’ 669’ £79’ k"]

>>> val 11 line:
val == ‘5";
newVal = 1
<«——— ...butit passes

newVal = 0 the else test

null value
fails 1st test...

The space result is an extra pixel in each row

which shifts the entire grid ,

To see what could happen if we don’t account for the null value in the list, let’s
look at a simple example.

In this case, we want to change all the pixels with an original value of 5 to a
new value of zero. Pixels with any other values will not be changed.

When the null value at the end of the list is run through the if statement, it will
fail the if test...

but it will pass the else test. Since the else test passes, the null pixel would be
assigned a new value of zero. This would create an extra pixel at the end of
each row — which will cause an error when the text file is converted to a raster.

12

The solution

Two options...
1. remove last 2 characters from the string...

>>> line = o_txtFile.readline()[:-2]
‘551672 —> ‘55167
2. remove last item from the list...
>>> line = o_txtFile.readline()
>>> line = line.split(“ ”)[:-1]
[*57% %87, *1%,%6", “T" 28 = ["§", "5, ‘1°,¢',*T"]

13

There are two easy solutions to the problem caused by the space between the
last value in the line and the “\n” character.

The 15t option is to remove the last two characters from the end of each line in
the readline statement.

The 2 option is to remove the last item from the list in the split statement.

13

Example: modifying raster
pixel values

readLine = o read txt.readline()
readVal ' readLine :

readLine:
readLine = readLine.split(* ”)[:-1] readVal == “2":
writeLine = *”) writeVal = “1”
for each value in line... ‘/
writeVal = 0"

writeLine += “\n”
writeLine += writeVal + “”

o write txt.write(writeLine)

readLine = o_read txt.readline()

14

Here we see an example of the code that can be used to create a new raster
text file that is a modified version of the original. Note that prior to these lines
of code, are lines that 1) open both the original text file and the new text file
and 2) copy the header lines from the original text file to the new text file.

The “for each value in line” section would change depending on the specific
objective. In this example, it simply changes all original pixels with a value of 2
to a new value of 1; all other pixels are changed to a new value of 0.

14

Converting text file to raster

o read_txt.close()
close text files

o_write_txt.close()

arcpy.ASCIIToRaster_conversion(write_txt, newRaster)

B write_txt.txt - Not... E‘@I[X|

File Edit Format View Help

ncols 3

nrows 3

x11corner 500

y1lcorner 1500

cellsize 100

NODATA_value -9999

000

100

1 b B

< >
tnl,

15

The final steps are to close both the original and the new text file...

And then convert the new text file back to a raster format using arcpy’s
ASCIlIToRaster tool.

15

